InterviewSolution
Saved Bookmarks
| 1. |
For every positive integer n, prove that `7^n-3^n`is divisible by 4. |
|
Answer» `7^n - 3^n = 4t` a) `n=1` b) `n=k, n=k+1` a) n=1, LHS`7^n - 3^n= 7-3 = 4` RHS`= 4` b) Assumption `n=k` `7^n - 3^n = 4k` `n= k+1` LHS: `7^(k+1) - 3^(k+1)` `= 7*7^k - 3*3^k` `= 4*7^k + 3 * 7^k - 3*3^k` `= 4(7^k) + 4t` `= 4(7^k + t)` Answer |
|