1.

For every positive integer n, prove that `7^n-3^n`is divisible by 4.

Answer» `7^n - 3^n = 4t`
a) `n=1`
b) `n=k, n=k+1`
a) n=1, LHS`7^n - 3^n= 7-3 = 4`
RHS`= 4`
b) Assumption `n=k`
`7^n - 3^n = 4k`
`n= k+1`
LHS: `7^(k+1) - 3^(k+1)`
`= 7*7^k - 3*3^k`
`= 4*7^k + 3 * 7^k - 3*3^k`
`= 4(7^k) + 4t`
`= 4(7^k + t)`
Answer


Discussion

No Comment Found