InterviewSolution
Saved Bookmarks
| 1. |
`(2n+7) lt (n+3)^(2)` |
|
Answer» For n=1 L.H.S `=2xx1+7=9` R.H.S. `=(1+3)^(2)=16` `:. " "L.H.S. lt R.H.S.` `rArr` Given statement is true for n=1 Let given statement be true for n=k `:. " "2k+7 lt (k+3)^(2)` for n=K+1 `2(k+1)+7 =(2k+7)+2` `lt (k+3)+2` [From inequation (1)] `=K^(2)+6k+11` `lt (k^(2)+6K+11)+(2k+5)` `lt K^(2)+8K+16lt (k+4)^(2)` ` rArr 2(k+1) +7 lt (K+4)^(2)` `rArr` Given statement is also true for n=K+1 Hence from the principle of mathematical induction P (n) is true for all natural numbes n. |
|