InterviewSolution
Saved Bookmarks
| 1. |
Prove the identity: (1 + tan α tan β)2 + (tan α – tan β)2 = sec2 α sec2 β |
|
Answer» Let us consider the LHS (1 + tan α tan β)2 + (tan α – tan β)2 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β 1 + tan2 α tan2 β + tan2 α + tan2 β tan2 α (tan2 β + 1) + 1 (1 + tan2 β) (1 + tan2 β) (1 + tan2 α) As we know, 1 + tan2 θ = sec2 θ Therefore, sec2 α sec2 β = RHS ∴ LHS = RHS Thus proved. |
|