1.

Prove the identity: sin 4x = 4 sin x cos3 x – 4 cos x sin3 x

Answer»

Let us consider the LHS

sin 4x

As we know, sin 2x = 2 sin x cos x

cos 2x = cos2 x – sin2 x

Therefore,

sin 4x = 2 sin 2x cos 2x

= 2(2 sin x cos x) (cos2 x – sin2 x)

= 4 sin x cos x (cos2 x – sin2 x)

= 4 sin x cos3 x – 4 sin3 x cos x

= RHS

Thus proved.



Discussion

No Comment Found