| 1. |
Rationalise the denominator of : root over 32+ root over 48 by root over 8 + root over 12 |
|
Answer» Answer: The value of \frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}} 8
+ 12
32
+ 48
is 2. \sqrt{32} 32
can be SIMPLIFIED as \sqrt{16 \times 2}=4 \sqrt{2} 16×2
=4 2
Similarly, \sqrt{48} 48
can be simplified as \sqrt{16 \times 3}=4 \sqrt{3} 16×3
=4 3
The same way, \sqrt{8} 8
can be simplified as \sqrt{4 \times 2}=2 \sqrt{2} 4×2
=2 2
\sqrt{12} 12
can be simplified as \sqrt{3 \times 4}=2 \sqrt{3} 3×4
=2 3
As per given problem, \frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}} 8
+ 12
32
+ 48
can be represented by using its simplified form, Therefore, \begin{gathered}\begin{ARRAY}{l}{=\frac{(4 \sqrt{2}+4 \sqrt{3})}{(2 \sqrt{2})+2 \sqrt{3}}} \\ \\ {=\frac{(4 \sqrt{2}+\sqrt{3})}{(2 \sqrt{2})+\sqrt{3}}} \\ \\ {=2}\END{array}\end{gathered} = (2 2
)+2 3
(4 2
+4 3
)
= (2 2
)+ 3
(4 2
+ 3
)
=2
∴ The value is found to be 2. Step-by-step explanation: Pa brainlies nalang po carry on learning |
|