InterviewSolution
| 1. |
Rationalising factor of \(^3\sqrt{16}\) - \(^3\sqrt{4}\) + 1 is ………………(A) \(^3\sqrt{4}\) + 2 (B) \(^3\sqrt{4}\) – 2 (C) \(^3\sqrt{4}\) + 1 (D) \(^3\sqrt{4}\) – 1 |
|
Answer» Correct option is (C) \(\sqrt[3]4+1\) A rationalising factor of a given irrational number is an irrational number whose multiple with given irrational number gives a rational number. (A) \((16^\frac13-4^\frac13+1)(4^\frac13+2)\) \(=64^\frac13-16^\frac13+4^\frac13+2.16^\frac13-2.4^\frac13+2\) \(=(4^3)^\frac13+16^\frac13-4^\frac13+2\) \(=4+2+16^\frac13-4^\frac13\) \(=6+16^\frac13-4^\frac13\) which is an irrational number. Thus, \((4^\frac13+2)\) is not a rationalising factor of \((16^\frac13-4^\frac13+1).\) (B) \((16^\frac13-4^\frac13+1)(4^\frac13-2)\) \(=64^\frac13-16^\frac13+4^\frac13-2.16^\frac13+2.4^\frac13-2\) \(=(4^3)^\frac13-3.16^\frac13+3.4^\frac13-2\) \(=4-2-3.16^\frac13+3.4^\frac13\) \(=2-3.16^\frac13+3.4^\frac13\) which is an irrational number. Thus, \((4^\frac13-2)\) is not a rationalising factor of \((16^\frac13-4^\frac13+1).\) (C) \((16^\frac13-4^\frac13+1)(4^\frac13+1)\) \(=64^\frac13-16^\frac13+4^\frac13+16^\frac13-4^\frac13+1\) \(=(4^3)^\frac13+1\) = 4+1 = 5 which is a rational number. Thus, \((4^\frac13+1)\) is a rationalising factor of \((16^\frac13-4^\frac13+1).\) (D) \((16^\frac13-4^\frac13+1)(4^\frac13-1)\) \(=64^\frac13-16^\frac13+4^\frac13-16^\frac13+4^\frac13-1\) \(=(4^3)^\frac13-2.16^\frac13+2.4^\frac13-1\) \(=4-1-2.16^\frac13+2.4^\frac13\) \(=3-2.16^\frac13+2.4^\frac13\) which is an irrational number. Thus, \((4^\frac13-1)\) is not a rationalising factor of \((16^\frac13-4^\frac13+1).\) Correct option is (C) \(^3\sqrt{4}\) + 1 |
|