| 1. |
Replace the letter by digit so that the following calculation are correct A9 2B 97 |
|
Answer» Answer: Let N be the 5 DIGIT number JOINT . Let J+O+I+N+T=S REQUIRED : (J+O+I+N+T)3=JOINT=N(1) minimum value of N is 10234 and maximum value 98765 10234−−−−−√3≤S≤98765−−−−−√3 21 But maximum possible S=9+8+7+6+5=35 21 N=104J+1000O+100I+10N+T Take MOD w.r.t 9 Since 10n≡1mod9 N≡J+O+I+N+T≡Smod9. THEREFORE S3≡Smod9 this is possible if mod values are −1,0 or 1 So eligible values of S consistent with (2)are26,27,28 and 35 263=17576; Digits are not distinct.Discard. 273=19683; Digits are distinct ; 1+9+6+8+3=27 . O.K. 283=21952; Digits are not distinct.Discard. 353=42875; Digits are distinct ; 4+2+8+7+5=26≠35. Discard. So only solution is 19683 |
|