1.

Scosecx.log(cos ecx - cotx) dx =(1) logº (cos eex + cotx) +C(2) -- log? (cosecx - cotx)+Clog(3)log (cosecx - cotx)+C(4) --log(cos ecx - cotx)+C22​

Answer»

Answer:

Given,

cosecx−cotx=

2

3

……. (1)

We know that , cosec

2

X−cot

2

x=

2

3

(cosecx+cotx)(cosecx−cotx)=1 …..(2)

From equation (1) and(2),

(cosec x+cotx)

2

3

=1

cosec x+cotx=

3

2

Add equation (1) to (3) we get,

2cosecx=

3

2

+

2

3

cosec x=

12

13

SINX=

13

12

sinx is positive it means “sinx ” LIE in either first or SECOND quadrant

Putting cosec x=

12

13

in equation (3) we get

cosec x+cotx=

3

2

12

13

+cotx=

3

2

cot x=−

12

5

cotx is NEGATIVE so can either be in second or fourth quadrant

but sinx is also positive x must lie in second quadrant

Now cotx=

sinx

cosx

cosx=cotx×sinx

cosx=−

12

5

×

13

12

cosx=−

12

5

Hence x lie in second quadrant.

Step-by-step explanation:

i hope help you



Discussion

No Comment Found

Related InterviewSolutions