InterviewSolution
| 1. |
Sec θ + Tan θ = p then Sin θ =A) p2−1/p2+1B) p/p2+1C) p2−1/pD) p2+1/p2−1 |
|
Answer» Correct option is: A) \(\frac{p^2-1}{p^2+1}\) We have sec \(\theta\) + tan \(\theta\) = P ....(1) On multiplying both sides of equation (1) by(sec \(\theta\) - tan \(\theta\) ), we get (sec \(\theta\) + tan \(\theta\) ) (sec \(\theta\) - tan \(\theta\) ) = P ( sec \(\theta\) - tan \(\theta\) ) = P ( sec \(\theta\) - tan \(\theta\)) = \(\sec^2\, \theta - tan^2 \, \theta = 1\) (\(\because\) \(\sec^2\, \theta - tan^2 \, \theta = 1\)) = sec \(\theta\) - tan \(\theta\) = \(\frac 1P\) ....(2) By adding equations (1) & (2), we get (sec \(\theta\) + tan \(\theta\)) + ( sec \(\theta\) - tan \(\theta\)) = P + \(\frac 1P\) = 2 sec \(\theta\) = \(\frac {P^2+1}{P}\) = sec \(\theta\) = \(\frac {P^2+1}{2P}\) ....(3) By subtracting equation (2) from equation (1), we get (sec \(\theta\) + tan \(\theta\)) - ( sec \(\theta\) - tan \(\theta\)) = P - \(\frac 1P\) = 2 tan \(\theta\) = \(\frac {P^2-1}{P}\) = tan \(\theta\) = \(\frac {P^2-1}{2P}\) ....(4) Now, sin \(\theta\) = \(\frac {\frac {sin\, \theta}{cos\, \theta}}{\frac 1{cos\, \theta}} = \frac {tan\, \theta}{sec\, \theta}= \frac {\frac {P^2-1}{2P}}{\frac {P^2+1}{2P}} = \frac {P^2-1}{P^2+1}\) (From (3) & (4) Correct option is: A) \(\frac{p^2-1}{p^2+1}\) |
|