InterviewSolution
Saved Bookmarks
| 1. |
Show that a real value of `x`will satisfy hte equation `(1-i x)//(1+i x)=a-i b`if `a^2+b^2=1,w h e r ea ,b`real. |
|
Answer» We have `(1-ix)/(1+ix)=(a-ib)/(1)rArr((1-ix)+(1+ix))/((1-ix)-(1+ix))=((a-ib)+1)/((a-ib)-1)" "["by componendo and dividendo"]` `rArr (2)/(-2ix)=((a+1)-ib)/((a-1)-ib)rArr -ix=((a-1)-ib)/((a+1)-ib)xx((a+1)+ib)/((a+1)+ib)` `rArr -ix = ((a^(2)-1+b^(2))+{(a-1)b-(a+1)b}i)/((a+1)^(2)+b^(2))` `=(-2bi)/((a+1)^(2)+b^(2))" "[because a^(2)+b^(2)=1]` `rArr x=(2b)/((a+1)^(2)+b^(2))`, which is purely real. |
|