Saved Bookmarks
| 1. |
Show that for a first order reaction, t_(99.9%)=10t_(1//2). |
|
Answer» Solution :For first order reaction `t=(2.303)/(K)log""([R]_(0))/([R])` The TIME required for `99.9%` completion is `t_(99.9%)=(2.303)/(K)log""(100)/(100-99.9)` `=(2.303)/(K)log""(100)/(0.1)` `=(2.303)/(K)log 1000` `=(2.303)/(K)LOG10^(3)""[logm^(n)=n log m]` `t_(99.9%)=(3xx2.303)/(K)rArr (6.909)/(K)"….(1)"` For the first order reaction line required line required to complete `50%` is `t_(1//2)=(0.693)/(K)"…(2)"` `(eq(1))/(eq(2))` `(t_(99.9%))/(t_(1//2))=(((9.909)K))/((0.909)/(K))` `rArr (6.909)/(K)xx(K)/(0.693)` `(t_(99.9%))/(t_(1//2))=10""rArr""t_(199.9%=10t_(1//2)` |
|