1.

Show that \(\frac{2}{\sqrt7}\) is irrational.

Answer»

\(\frac{2}{\sqrt7}\) = \(\frac{2}{\sqrt7}\) x \(\frac{\sqrt7}{\sqrt7}\) = \(\frac{2}{7}\)\(\sqrt7\)

Let  \(\frac{2}{7}\)\(\sqrt7\) is a rational number.

∴ \(\frac{2}{7}\)\(\sqrt7\) = \(\frac{p}{q}\), where p and q are some integers and HCF(p,q) = 1 ….(1)

⇒ 2√7q = 7p 

⇒(2√7q)2 = (7p)2 

⇒7(4q2 ) = 49p2 

⇒4q2 = 7p2 

⇒ q2 is divisible by 7 

⇒ q is divisible by 7 …..(2) 

Let q = 7m, where m is some integer. 

∴2√7q = 7p 

⇒ [2√7 (7m)]2 = (7p)2 

⇒343(4m2 ) = 49p2 

⇒ 7(4m2 ) = p2 

⇒ p2 is divisible by 7 

⇒ p is divisible by 7 ….(3) 

From (2) and (3), 7 is a common factor of both p and q, which contradicts (1). 

Hence, our assumption is wrong.

Thus, \(\frac{2}{\sqrt7}\) is irrational.



Discussion

No Comment Found