1.

Show that `lim_(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1))` does not exist.

Answer» Let `f(x)=((e^(1//x)-1)/(e^(1//x)+1)).` Then
`underset(xto0^(+))limf(x)=underset(h+0)limf(0+h)=underset(hto0)limf(h)`
`=lim_(hto0)((e^(1//h)-1)/(e^(1//h)+1))=underset(hto0)lim((1-(1)/(e^(1//h)))/(1+(1)/(e^(1)//h)))=((1-0)/(1+0))=1.`
`underset(xto0^(-))limf(x)underset(hto0)limf(0-h)=underset(hto0)limf(-h)`
`=underset(xto0)lim((e^(-1//h)-1)/(e^(-1//h)+1))=underset(hto0)lim(((1)/(e^(1//h))-1)/((1)/(e^(1//h))+1))=((0-1)/(0+1))=-1.`
Thus, `underset(xto0^(+))limf(x)neunderset(xto0^(-))limf(x).`
Hence, `underset(xto0)limf(x)` does not exist.


Discussion

No Comment Found