1.

show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isoceles​

Answer» RIGHT triangles inscribed in a circleTo FIND : triangle with maximum perimeter is isoscelesSolution: right triangles inscribed in a circleHence hypotenuse will be DIAMETER = c     ( constant)Let say one perpendicular side = xthen other perpendicular side  = √(c² - x²)Perimeter P = x +  √(c² - x²) + c dP/dx =  1  + (-2x)/2√(c² - x²)   + 0=> dP/dx =  1 - x/√(c² - x²)   dP/dx =   0=>   1 - x/√(c² - x²)    = 0=> x/√(c² - x²) = 1=> x = √(c² - x²) => x² = c² - x²=> 2x² = c²=> x² = c²/2=> x = c/√2dP/dx =  1 - x/√(c² - x²)   d²P/dx² = 0  - 1/√(c² - x²)   - x (-2x)(-1/2)/(c² - x²)√(c² - x²)  =  -  1/√(c² - x²)  - x²/(c² - x²)√(c² - x²)   =>    d²P/dx²< 0Hence P is max for x = c/√2 √(c² - x²)  =  c/√2Hence sides are c/√2, c/√2 , c=>  triangle with maximum perimeter is isosceles​QEDHence provedLearn More:with rectangle of given perimeter finding the one with a maximum ... brainly.in/question/19482093 with rectangle of a given perimeter finding the one with a maximum ... brainly.in/question/3878004 . In about four (4) lines describe how to determine the area and ... brainly.in/question/18731780


Discussion

No Comment Found

Related InterviewSolutions