InterviewSolution
Saved Bookmarks
| 1. |
Show that points A(-1, 0) , B(-2,1) , C(1,3) and D(2,2) form a parallelogram . |
|
Answer» Given A(-1,0) , B(-2,1) , C(1,3) and D(2,2) . `AB = sqrt((-2+1)^(2) + (1-0)^(2)) = sqrt2` units BC = `sqrt((1-(-2))^(2) + (3-1)^(2)) = sqrt(13)` units `CD = sqrt((2-1)^(2) + (2-3)^(2)) = sqrt2` units `DA = sqrt((2-(-1))^(2) + (2-0)^(2)) = sqrt(13)` units `AC = sqrt((1-(-1))^(2) + (3-0)^(2)) = sqrt(13)` units BD = `sqrt((2-(-2))^(2) + (2-1)^(2)) = sqrt(17)` units Clearly , AB = CD , BC = DA and AC `ne` BD . That is the opposite sides of the quadrilateral are equal and diagonals are equal . Hence , the given points form a parallelogram . |
|