1.

Show that points A(-1, 0) , B(-2,1) , C(1,3) and D(2,2) form a parallelogram .

Answer» Given A(-1,0) , B(-2,1) , C(1,3) and D(2,2) .
`AB = sqrt((-2+1)^(2) + (1-0)^(2)) = sqrt2` units
BC = `sqrt((1-(-2))^(2) + (3-1)^(2)) = sqrt(13)` units
`CD = sqrt((2-1)^(2) + (2-3)^(2)) = sqrt2` units
`DA = sqrt((2-(-1))^(2) + (2-0)^(2)) = sqrt(13)` units
`AC = sqrt((1-(-1))^(2) + (3-0)^(2)) = sqrt(13)` units
BD = `sqrt((2-(-2))^(2) + (2-1)^(2)) = sqrt(17)` units
Clearly ,
AB = CD , BC = DA and AC `ne` BD .
That is the opposite sides of the quadrilateral are equal and diagonals are equal .
Hence , the given points form a parallelogram .


Discussion

No Comment Found