1.

Show that `sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi`.

Answer» Let, `sin^-1(12/13) = x and cos^-1(4/5) = y and tan^-1(63/16)=z->(1)`
Then,`sin x = 12/13 and cos y = 4/5`
`tan x = 5/12 and tan y = 3/4`
`x = tan^-1(5/12) and y = tan^-1(3/4)->(2)`
From (1) and (2),
`sin^-1(12/13) + cos^-1(4/5) = tan^-1(12/5)+tan^-1(3/4) `
We know, `tan^-1x+tan-^-1y = tan^-1((x+y)/(1-xy))`
`tan^-1(12/5)+tan^-1(3/4) = tan^-1((12/5+3/4)/(1-12/5**3/4))`
`=tan^-1((63/20)/(-4/5)) = tan^-1(-63/16)->(3)`
From (1),`tan^-1(63/16) = z`, So, `tan z = 63/16`
`=>-tan z = -63/16`
`=>tan(pi - z) = -63/16`
`=>tan^-1(-63/16) = pi-z->(4)`
So, From(1), (3) and (4),
`L.H.S. = pi-z+z = pi = R.H.S.`


Discussion

No Comment Found