1.

Show that the distance between the points `P(acosalpha, asinalpha)` and `Q(a sin beta,a sinbeta)` is `2a sin(a-b)/(2)`

Answer» Correct Answer - NA
`PQ=sqrt(a^2(cosalpha-cosbeta)^2=a^2(sinalpha-beta)^2)`
`a=sqrt(sin^2alpha+cos^2alpha+cos^2beta+sin^2beta-2cosalphacosbeta-2sinalphasinbeta)`
`a=sqrt(2(1-cos(alpha-beta))`
`a=sqrt(2xx2sin^(2).(alpha-beta)/(2))`
`=2a"sin"(alpha-beta)/(2)`


Discussion

No Comment Found

Related InterviewSolutions