1.

Show that the four points A, B, C and D with position vectors`4 hat i+5 hat j+ hat k ,-( hat j+ hat k),3 hat j+9 hat j+4 hat k a n d 4( hat i+ hat j+ hat k)`, respectively are coplanar.

Answer» Let the given points be A, B, C, D respectively.
Point a, B, C, D are coplanar `hArr vec(AB), vec(AC)and vec(AD)` are coplanar
`hArr [vec(AB)vec(AC)vec(AD)]=0`.
Now, `vec(AB)=("p.v.of B")-("p.v. of A")`
`=(-hat(j)-hat(k))-(4hat(i)+5hat(j)+hat(k))=(-4hat(i)-6hat(j)-2hat(k))`
`vec(AC)=("p.v of C")-("p.v. of A")`
`=(3 hat(i)+9hat(j)+4hat(k))-(4hat(i)+5hat(j)+hat(k))=(-hat(i)+4hat(j)+3hat(k))`
`vec(AD)=("p.v. of D")-("p.v. of A")`
`=(-4hat(i)+4hat(j)+4hat(k))-(4hat(i)+5hat(j)+hat(k))=(-8hat(i)-hat(j)+3hat(k))`.
`:. [vec(AB)vec(AC)vec(AD)]=|(-4,-6,-2),(-1 ,4,3),(-8,-1,3)|`
`=|(0,-22, -14),(-1, 4, 3),(0, -21, -33)|{{:(R_(1)rarrR_(1)-4R_(2)),(R_(3)rarr R_(3)-8R_(2)):}}`
`=-(-1)[462-462]=0`.
`:. vec(AB), vec(AC) and vec(AD)` are coplanar.
Hence, the points A, B, C, D are coplanar.


Discussion

No Comment Found