1.

Show that the function f: N → Z, defined by\(f(x)=\begin{cases}\frac{1}{2}(n-1)\text{ when n is odd}\\-\frac{1}{2}n,\text{ when n is even}\end{cases}\)is both one - one and onto.

Answer»

\(f(x)=\begin{cases}\frac{1}{2}(n-1)\text{ when n is odd}\\-\frac{1}{2}n,\text{ when n is even}\end{cases}\)

f(1) = 0 

f(2) = - 1 

f(3) = 1 

f(4) = - 2 

f(5) = 2 

f(6) = - 3 

Since at no different values of x we get same value of y ∴f(n) is one –one

And range of f(n) = Z = Z(codomain) 

∴ the function f: N → Z, defined by

\(f(x)=\begin{cases}\frac{1}{2}(n-1)\text{ when n is odd}\\-\frac{1}{2}n,\text{ when n is even}\end{cases}\)

is both one - one and onto.



Discussion

No Comment Found