

InterviewSolution
Saved Bookmarks
1. |
Show that the lines `(x-a+d)/(alpha-delta)=(y-a)/alpha=(z-a-d)/(alpha+delta)`and `(x-b+c)/(beta-gamma)=(y-b)/beta=(z-b-c)/(beta+gamma)`are coplanar. |
Answer» Given lines are ` (x-a+d)/(alpha-delta)= (y-a)/(alpha)= (z-a-d)/(alpha+delta), (x-b-c)/(beta-gamma)= (y-b)/(beta)=(z-b-c)/(beta+gamma)` Now `" "|{:(a-d-b+c,,a-b,,a+d-b-c),(alpha-delta,,alpha,,alpha+delta),(beta-gamma,,beta,,beta+gamma):}|` `" "=|{:(-d+c,,a-b,,d-c),(-delta,,alpha,,delta),(-gamma,,beta,,gamma):}|=0` `" " ("Applying " C_(1)to C_(1)-C_(2) and C_(3)to C_(3)-C_(2))` Hence, the lines are coplaner. Equation of plane containing these lines is `" "|{:(x-a+d,,y-a,,z-a-d),(alpha-delta,,alpha,,alpha+delta),(beta-gamma,,beta,,beta+gamma):}|=0` `" "|{:(x-2y+z,,y-a,,z-a-d),(0,,alpha,,alpha+delta),(0,,beta,,beta+gamma):}|=0` `" "("Applying "C_(1)to C_(1)+C_(3)-2C_(2))` or `" "(x-2y+z)(alphagamma-betadelta)=0` or `" "x-2y +z=0 " "[because (alphagamma ne betadelta)]` |
|