

InterviewSolution
Saved Bookmarks
1. |
show that the matrix `A=[(2,-2,-4),(-1,3,4),(1,-2,-3)]` is idempotent. |
Answer» `A^(2)=A.A=[(2,-2,-4),(-1,3,4),(1,-2,-3)]xx[(2,-2,-4),(-1,3,4),(1,-2,-3)]` `=[{:(2.2+(-2).(-1)(-4).1),((-1).2+3.(-1)+4.1),(12+(-2).(-1)+(-3).1),(2.(-2)+(-2).3+(-4).(-2)),((-1).(-2)+3.3+4.(-2)),(1.(-2)+(-2).3+(-3).(-2)),(2.(-4)+(-2).4+(-4).(-3)),((-1).(-4)+3.4.+4.(-3)),(1.(-4)+(-2).4+(-3).(-3)):}` `[(2,-2,-4),(-1,3,4),(1,-2,-3)]=A` Hence the matrix A is idempotent. |
|