1.

Show that the points A (1,- 2), B (3, 6), C (5, 10) and D (3, 2) are the vertices of a parallelogram.

Answer»

Vertices of a parallelogram ABCD are: A (1,- 2), B (3, 6), C (5, 10) and D (3, 2) Length of side AB 

\(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

Length of side AB = \(\sqrt{(3 - 1)^2 + (6 + 2)^2}\) = \(\sqrt(4 + 64)\) 

\(\sqrt68\) units

Length of side BC = \(\sqrt{(5 - 3)^2 + (10 - 6)^2}\) = \(\sqrt(4 + 16)\) 

\(\sqrt20\) units

Length of side CD = \(\sqrt{(3 - 5)^2 + (2 - 10)^2}\) = √(4 + 64) 

= √68 units

Length of side DA = \(\sqrt{(3 - 1)^2 + (2 + 2)^2}\) = √(4+16) 

= √20 units 

Length of diagonal BD = \(\sqrt{(3 - 3)^2 + (2 - 6)^2}\) 

= √16 = 4 units 

Length of diagonal AC = \(\sqrt{(5 - 1)^2 + (10 + 2)^2}\) = √(16+144)

= √160 units

Opposite sides of the quadrilateral formed by the given four points are equal i.e. (AB = CD) & (DA = BC)Also, the diagonals BD & AC are unequal.Therefore, the given points form a parallelogram.



Discussion

No Comment Found

Related InterviewSolutions