1.

Show that the square of odd integer is of the form 8q + 1, for some integer q.

Answer»

From Euclid’s division lemma, 

a = bq+r ; where 0 < r < b 

Putting b=4 for the question, 

⇒ a = 4q + r, 0 < r < 4 

For r = 0, we get a = 4q, which is an even number. 

For r = 1, we get a = 4q + 1, which is an odd number. 

On squaring, 

⇒ a2 = (4q + 1)2 

= 16q2 + 1 + 8q 

= 8(2q2 + q) + 1 

= 8m + 1, where m = 2q2 + q 

For r = 2, we get a = 4q + 2 = 2(2q + 1), which is an even number. 

For r = 3, we get a = 4q + 3, which is an odd number. 

On squaring, 

⇒ a2 = (4q + 3)2 

= 16q2 + 9 + 24q 

= 8(2q2 + 3q + 1) + 1

= 8m + 1, where m = 2q2 + 3q + 1 

Thus, the square of an odd integer is of the form 8q + 1, for some integer q.



Discussion

No Comment Found