InterviewSolution
Saved Bookmarks
| 1. |
सिद्ध कीजिए कि- (i) `""^(n)P_(r) = (n-r+1) . ""^(n)P_(r-1)` , (ii) `""^(n)P_(r) = ""^(n-1)P_(r) +r , ""^(n-1)P_(r-1)` (iii) `(""^(n)P_(r))/(""^(n)P_(r-2)) = (n-r+2) (n-r+1)` (iv) `""^(2n)p_(n) = 2^(n)[1.3.5"...."(2n-1)]` |
|
Answer» (i) दायाँ पक्ष `= (n-r+1) .""^(n)P_(r-1)` `= (n-r+1).(n!)/((n-r+1)!)` `=(n-r+1).(n!)/((n-r+1)(n-r)!)` `rArr = (n!)/((n-r)!) = ""^(n)P_(r) =` बायाँ पक्ष (ii) दायाँ पक्ष `=""^(n-1)P_(r)+r.""^(n-1)P_(r-1)` `=((n-1)!)/((n-1-r)!) +r.((n-1)!)/((n-1-r+1)!)` `= (n-1)![(1)/((n-r-1)!) +(r)/((n-r)!)]` `(n-1)![(n-r)/((n-r)(n-r-1)!)+(r)/((n-r)!)]` `= (n-1)![(n-r+r)/((n-r)!)]=((n-1)!n)/((n-r)!)` `= (n!)/((n-r)!) = .^(n)P_(r)=` बायाँ पक्ष (iii) बायाँ पक्ष `=(""^(n)P_(r))/(""^(n)P_(r-2))` `=(n!)/((n-r)!) xx ((n-r+2)!)/(n!)` `= ((n-r+2)!)/((n-r)!) = ((n-r+2)(n-r+1)(n-r)!)/((n-r)!)` `= (n-r+2)(n-r+1) = ` दायाँ पक्ष (iv) बायाँ पक्ष `= ""^(2n)p_(n) = (2n!)/((2n-n)!) = (2n!)/(n!)` `= (1.2.3"..."(2n-2)(2n-1)(2n))/(n!)` `= ({1.3.5"..."(2n-1)}.{2.4.6.8"...."(2n-2)(2n)})/(n!)` `=({1.3.5.7 "...."(2n-1)}.2^(n).n!)/(n!)` `= 2^(n) {1.3.5"..."(2n-1)}` `=`दायाँ पक्ष |
|