1.

Simplify by rationalising the denominator​

Answer»

Step-by-step EXPLANATION:

\frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5}  }  \times  \frac{4 -  \sqrt{5} }{4 -  \sqrt{5} }

\frac{ ({4  +  \sqrt{5} )}^{2} }{ {4}^{2} -  { \sqrt{5} }^{2}  }  + \frac{ ({4 -  \sqrt{5} )}^{2} }{ {4}^{2} -  { \sqrt{5} }^{2}  }

use \: the \: identity \:  {a}^{2}  +  {b}^{2}  + 2ab

\frac{ {4}^{2} +  { \sqrt{5} }^{2}  + 2(4 \times  \sqrt{5}  )}{8 - 5}  +  \frac{ {4}^{2}  +  { \sqrt{5} }^{2} - 2(4 \times  \sqrt{5}  }{8 - 5}

\frac{8 + 5 + 8 \times 2 \sqrt{5} }{3}  +  \frac{8 + 5 - 8 \times 2 \sqrt{5} }{3}

\frac{8 + 5 + 8 \times 2 \sqrt{5 } + 8 + 5 - 8 \times 2 \sqrt{5}  }{3}



Discussion

No Comment Found

Related InterviewSolutions