 
                 
                InterviewSolution
| 1. | Simplify:(i) \((4^{-1}\times 3^{-1})^{2}\)(ii) \((5^{-1}\div 6^{-1})^{3}\)(iii) \((2^{-1}\times 4^{-1})\div 2^{-2}\)(iv) \((3^{-1}\times 4^{-1})^{-1}\times 5^{-1}\) | 
| Answer» (i) \((4^{-1}\times 3^{-1})^{2}\) ⇒ \((\frac{1}{4}\times \frac{1}{3})^{2}\)[Using \(a^{-n}=\frac{1}{a^{n}}\);\(a^{2}=a\times a\)] ⇒ \(\frac{1}{12}\times \frac{1}{12}\) = \(\frac{1}{144}\) (ii) \((5^{-1}\div 6^{-1})^{3}\) ⇒ \((\frac{1}{5}\times \frac{1}{6})^{3}\)[Using \(a^{-n}=\frac{1}{a^{n}}\);\(a^{n}=a\times a..........n\,times\)] ⇒ \((\frac{1}{5}\times \frac{6}{1})^{3}\) = \((\frac{6}{5})^{3}\)=\(\frac{216}{125}\)[Using and \(\frac{1}{a}\div \frac{1}{b}\)=\(\frac{1}{a}\times \frac{b}{1}\)] (iii) \((2^{-1}\div 4^{-1})\div 2^{-2}\) ⇒ \((\frac{1}{2}\times \frac{1}{4})\)\(\div \frac{1}{2^{2}}\)[Using \(a^{-n}=\frac{1}{a^{n}}\);\(a^{2}=a\times a\)] ⇒ \(\frac{1}{8}\times \frac{4}{1}\) = \(\frac{1}{2}\)[Using and \(\frac{1}{a}\div \frac{1}{b}\)=\(\frac{1}{a}\times \frac{b}{1}\)] (iv) \((3^{-1}\times 4^{-1})\times 5^{-1}\) ⇒ \((\frac{1}{3}\times \frac{1}{4})\times \frac{1}{5}\)[Using \(a^{-n}=\frac{1}{a^{n}}\)] ⇒ \(\frac{1}{12}\times \frac{1}{5}\) = \(\frac{1}{60}\) | |