 
                 
                InterviewSolution
| 1. | Simplify:(i) \(\{(\frac{1}{3})^{-3}-(\frac{1}{2})^{-3}\}\div (\frac{1}{4})^{-3}\)(ii) \((3^{2}-2^{2})\times (\frac{2}{3})^{-3}\)(iii) \(\{(\frac{1}{2})^{-1}\times (-4)^{-1}\}^{-1}\)(iv) \([\{(\frac{-1}{4})^{2}\}^{-2}]^{-1}\)(v) \(\{(\frac{2}{3})^{2}\}^{3}\times (\frac{1}{3})^{-4}\times 3^{-1}\times 6^{-1}\) | 
| Answer» (i) \(\{(\frac{1}{3})^{-3}-(\frac{1}{2})^{-3}\}\div (\frac{1}{4})^{-3}\) ⇒ \(\{(\frac{1}{3})^{-3}-(\frac{1}{2})^{-3}\}\div (\frac{1}{4})^{-3}\) ⇒ \((3^{3}-2^{3})\div 4^{3}\)[Using \(\cfrac{1}{a^{n}}\)= \(a^{-n}\)] ⇒ (27-8) ÷ \(4^{3}\) ⇒ 19 ÷ \(4^{3}\) ⇒ \(19\times \frac{1}{64}\)= \(\frac{19}{64}\)[Using and \(\frac{1}{a}\div \frac{1}{b}\)= \(\frac{1}{a}\times \frac{b}{1}\)] (ii) \((3^{2}-2^{2})\times (\frac{2}{3})^{-3}\) ⇒ \((3^{2}-2^{2})\times (\frac{2}{3})^{-3}\) ⇒ \((9-4)\times (\frac{3}{2})^{-3}\)[Using \(\cfrac{1}{a^{n}}\)= \(a^{-n}\)] ⇒ \((5)\times (\frac{3}{2})^{3}\) ⇒ \((5)\times (\frac{27}{8})\)[Using \(a^{n}=a\times a ...... ........n\,times\)] ⇒ \(\frac{135}{8}\) (iii) \(\{(\frac{1}{2})^{-1}\times (-4)^{-1}\}^{-1}\) ⇒ \(\{(\frac{1}{2})^{-1}\times (-4)^{-1}\}^{-1}\) ⇒ \(\{(2)\times (\frac{1}{-4})\}^{-1}\)[Using \(\cfrac{1}{a^{n}}\)= \(a^{-n}\)] ⇒ \(\{-\frac{1}{2}\}^{-1}\) ⇒ -2 (iv) \([\{(\frac{-1}{4})^{2}\}^{-2}]^{-1}\) ⇒ \([\{(\frac{-1}{4})^{2}\}^{-2}]^{-1}\) ⇒ \(\{-\frac{1}{4}\}^{4}\)[Using (aⁿ)ᵐ = aᵐⁿ] ⇒ \(\frac{1}{256}\)[Using \(a^{n}=a\times a ...... ........n\,times\)] (v) \(\{(\frac{2}{3})^{2}\}^{3}\times (\frac{1}{3})^{-4}\times 3^{-1}\times 6^{-1}\) \((\frac{2}{3})^{6}\times (\frac{1}{3})^{-4}\times \frac{1}{3}\times \frac{1}{2\times 3}\) \((\frac{2}{3})^{6}\times (\frac{1}{3})^{-4}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{3}\) \(\cfrac{2^{6-1}}{3^{6-4+1+1}}\) \(a^{m}\times a^{n}=a^{m+n}\) \(\cfrac{2^{5}}{3^{4}}\)= \(\cfrac{32}{81}\) | |