1.

`sin^(-1)[(sqrt(1+x)+sqrt(1-x))/(2)]` का x के सापेक्ष अवकल गुणांक ज्ञात कीजिए।

Answer» माना `y=sin^(-1)[(sqrt(1+x)+sqrt(1-x))/(2)]`
और `x=cos theta`
`therefore " "y=sin^(-1)[(sqrt(1+costheta)+sqrt(1-costheta))/(2)]`
`" "=sin^(-1)[(sqrt(2cos^(2).(theta)/(2))+sqrt(2sin^(2).(theta)/(2)))/(2)]`
`" "=sin^(-1)[(1)/(sqrt2)cos.(theta)/(2)+(1)/(sqrt2)sin.(theta)/(2)]`
`" "=sin^(-1)[sin.(pi)/(4)cos.(theta)/(2)+cos.(pi)/(4)sin.(theta)/(2)]`
`" "=sin^(-1)sin((pi)/(4)+(theta)/(2))=(pi)/(4)+(theta)/(2)=(pi)/(4)+(1)/(2)cos^(-1)x`
`rArr" "(dy)/(dx)=(d)/(dx)((pi)/(4)+(1)/(2)cos^(-1)x)`
`=0+(1)/(2)((-1)/(sqrt(1-x^(2))))=(-1)/(2sqrt(1-x^(2)))`


Discussion

No Comment Found