Saved Bookmarks
| 1. |
Sin (45° + θ) – cos (45° – θ) is equal to2 cos θ02 sin θ1 |
Answer» QUESTION :Find the VALUE of: sin(45° + θ) – cos (45°-θ) Formula's USED :Solution :We have , sin(45° + θ) – cos (45°-θ) USE formula of sin(a+b) and cos(a-b) ,then sin(45° + θ) – cos (45°-θ) =sin45°cosθ+sinθcos45°-(cosθcos45°-sinθsin45°) =sin45°cosθ+sinθcos45°-cosθcos45°+sinθsin45° We know that cos45°=sin45° =sin45°cosθ+sinθcos45°-cosθsin45°+sinθcos45° =0 Therefore,sin(45° + θ) – cos (45°-θ)=0 Another WAY to solve :We know that sin(90-x)=cosx and cos(90-x)=sinx Then, sin(45° + θ) – cos (45°-θ) =sin(45° + θ) – sin[90-(45°-θ)] =sin(45° + θ) – sin(45°+θ) =0 |
|