| 1. |
Sin theta-tan theta= a+1÷a-1 then find cos theta |
|
Answer» Step-by-step explanation: Answer: \bf\:\cos\theta=\frac{a^2-1}{a^2+1} Step-by-step explanation: Given: \sec\theta-\tan\theta=\frac{a+1}{a-1}........(1) We KNOW that \boxed{\bf\sec^2\theta-\tan^2\theta=1} Using \boxed{a^2-b^2=(a-b)(a+b)} \IMPLIES(\sec\theta-\tan\theta)(\sec\theta+\tan\theta)=1 \implies\frac{a+1}{a-1}(\sec\theta+\tan\theta)=1 \implies\sec\theta+\tan\theta=\frac{a-1}{a+1}........(2) ADDING (1) and (2), we get 2\sec\theta=\frac{a+1}{a-1}+\frac{a-1}{a+1} 2\sec\theta=\frac{(a+1)^2+(a-1)^2}{(a-1)(a+1)} 2\sec\theta=\frac{a^2+1+2a+a^2+1-2a}{a^2-1} 2\sec\theta=\frac{2a^2+2}{a^2-1} 2\sec\theta=\frac{2(a^2+1)}{a^2-1} Cancelling 2 on both sides, \sec\theta=\frac{a^2+1}{a^2-1} Taking RECIPROCALS on both sides, we get \boxed{\bf\:\cos\theta=\frac{a^2-1}{a^2+1}} |
|