InterviewSolution
Saved Bookmarks
| 1. |
`sin2x+cosx=0` |
|
Answer» Given equation: `sin2x+cosx=0`, or `2sinxcosx+cosx=0`, or `cosx(2sinx+1)=0` `rArr cosx=0` or `2sinx+1=0` If `cosx=0` then `x=(2n+1)pi/2`, where `n in z`, and `2sinx+1=0, rArr sinx=-1/2=sin(pi+pi/6)` `rArr sinx=sin(pi + pi/6)` `rArr sinx=sin(7pi)/(6)` `rArr x=npi+(-1)^(n)(7pi)/(6)`, where `n in Z` Therefore, the general solution of given equation is `x=npi+(-1)^(n)(7pi)/(6)` or `(2n+1)pi/2, n in Z` Ans. |
|