Saved Bookmarks
| 1. |
Sina/1-tan+cosa/1-cota=Sina+cosa |
|
Answer» How do you PROVE that sinA(1+tanA)+cosA(1+cotA)=secA+cosecA? What is the smartest way for transferring heavy DATA? To prove sin A(1+ tan A)+ COS A(1 + cot A) = SEC A + cosec A. LHS = sin A(1+ tan A)+ cos A(1 + cot A) = sin A + sin^2 A/ cos A + cos A + cos^2 A/ sin A = sin A + cos A + [sin^3 A + cos^3 A]/sin A cos A =[ sin^2 A cos A + cos^2 A sin A + sin^3 A + cos^3 A]/sin A cos A = [ sin^2 A cos A +cos^3 A + cos^2 A sin A + sin^3 A]/sin A cos A = [cos A (sin^2 A + cos^2 A) + sin A (sin^2 A + cos^2 A)]/sin A cos A = [cos A +sin A]/sin A cos A = (1/sin A) + (1/cos A) = cosec A + sec A = RHS. |
|