InterviewSolution
Saved Bookmarks
| 1. |
`sinx+sin3x+sin5x=0` |
|
Answer» Given equation: `sinx+sin3x+sin5x=0`, or `sin3x+(sin5x+sinx) =0`, or `sin3x+2sin(5x+x)/(2)cos(5x-x)/(2)=0`, or `sin3x+2sin3xcos2x=0`, or `sin3x(1+2cos2x)=0`, `rArr sin3x=0` or `1+2cos2x=0`, `sin3x=0` `3x=npi` `x=(npi)/(3)` If `1+2cos2x=0` `rArr cos2x=-1/2= cos(pi-pi/3)=cos(2pi)/(3)` `rArr x=npi+-pi/3` where `n in Z` Therefore, the general solution of given equation is `x=(npi)/(3)` or `npi +- pi/3, n in Z`. Ans. |
|