1.

`(sinx)^(x)+sin^(-1)sqrtx`

Answer» माना `y=(sinx)^(x)+sin^(-1)sqrtx`
माना `u=(sinx)^(x)` तथा `v=sin^(-1)sqrtx`
`therefore" "y=u+v`
`rArr" "(dy)/(dx)=(du)/(dx)+(dv)/(dx)" …(1)"`
अब `u(sinx)^(x)`
`rArr" "logu=log(sinx)^(x)=xlog sin x`
`rArr" "(1)/(u)(du)/(dx)=x(d)/(dx)logsinx+log sin x(d)/(dx)x`
`rArr" "(du)/(dx)=u[x.(cosx)/(sinx)+log sinx.1]`
`rArr" "(du)/(dx)=(sinx)^(x)[x cot x+log sin x]`
तथा `v=sin^(-1)sqrtx`
`rArr" "(dv)/(dx)=(d)/(dx)sin^(-1)sqrtx`
`=(1)/(sqrt(1-(sqrtx))^(2))(d)/(dx)sqrtx=(1)/(2sqrtx(1-x))`
समीकरण (1 ) से `(dy)/(dx)=(sinx)^(x)[x cot x+log sin x]+(1)/(2sqrtx(1-x))`


Discussion

No Comment Found