InterviewSolution
Saved Bookmarks
| 1. |
Solution of the differential equation `(xdy)/(x^(2)+y^(2))=((y)/(x^(2)+y^(2))-1)dx`, isA. `tan^(-1)((y)/(x))=-x+C`B. `tan^(-1)((y)/(x))=x+C`C. `tan^(-1)((x)/(y))=-x+C`D. `tan^(-1)((y)/(x))=-y+C` |
|
Answer» Correct Answer - A The given differential equation can be written as `(xdy-ydx)/(x^(2)+y^(2))=-dxrArrd{tan^(-1)((y)/(x))}=-dx` On integrating, we obtain `tan^(-1)((y)/(x))=-x+fC`, which is the required solution. |
|