1.

Solution of the differential equation `(xdy)/(x^(2)+y^(2))=((y)/(x^(2)+y^(2))-1)dx`, isA. `tan^(-1)((y)/(x))=-x+C`B. `tan^(-1)((y)/(x))=x+C`C. `tan^(-1)((x)/(y))=-x+C`D. `tan^(-1)((y)/(x))=-y+C`

Answer» Correct Answer - A
The given differential equation can be written as
`(xdy-ydx)/(x^(2)+y^(2))=-dxrArrd{tan^(-1)((y)/(x))}=-dx`
On integrating, we obtain
`tan^(-1)((y)/(x))=-x+fC`, which is the required solution.


Discussion

No Comment Found

Related InterviewSolutions