InterviewSolution
Saved Bookmarks
| 1. |
Solve : `2+tan x. cot.(x)/(2)+cot x. tan.(x)/(2)=0`. |
|
Answer» Correct Answer - `x = 2n pi pm(2pi)/(3), n in Z` `2+tan x.cot. (x)/(2)+cotx.tan.(x)/(2)=0` …(1) Let `an x.cot.(x)/(2)=y` Then equation (1) becomes `2+(y+(1)/(y))=0` `rArr y+(1)/(y)=-2` On solving, we get y = -1 or `tan x. cot.(x)/(2)=-1` or `(sin x)/(cos x)(cos.(x)/(2))/(sin.(x)/(2))=-1` or `(2sin.(x)/(2)cos.(x)/(2))/(cos x).(cos.(x)/(2))/(sin.(x)/(2))-1` or `(2"cos"^(2)(x)/(2))/(cos x)=-1` or `(1+cos x)/(cos x)=-1` or `cos x= -(1)/(2)` or `x=2n pi pm (2pi)/(3), n in Z` |
|