InterviewSolution
Saved Bookmarks
| 1. |
Solve : `2cos^(2)x+3sinx=0`. |
|
Answer» We have `2cos^(2)x+3sinx=0` `rArr2(1-sin^(2)x)+3sinx=0` `rArr2sin^(2)x-3sinx-2=0` `rArr2sin^(2)x-4sinx+sinx-2=0` `rArr2sinx(sinx-2)+(sinx-2)=0` `rArr(sinx-2)(2sinx+1)=0` `rArr(sinx-2)=0or(2sinx+1)=0` `rArrsinx=2or(2sinx+1)=0` `2sinx+1=0[becausesinx=2` is not possible] `rArrsinx=-(1)/(2)=-"sin"(pi)/(6)=sin(pi+(pi)/(6))="sin"(7pi)/(6)` `rArrsinx="sin"(7pi)/(6)` `rArrx={npi+(-1)^(n)*(7pi)/(6)}`, where `ninI`. Hence , the solution is given by `x={npi+(-1)^(n)*(7pi)/(6)}`, where `ninI`. |
|