1.

Solve: `3tan(theta-15^(@))=tan(theta+15^(@))`

Answer» `3tan(theta-15^(@))=tan(theta+15^(@))`
`rArr 3sin(theta-15^(@))/(cos(theta-15^(@)))=(sin(theta +15^(@))cos(theta-15^(@))`
`rArr 3.{2cos(theta+15^(@))sin(theta-15^(@))}=2sin(theta+15^(@)).cos(theta-15^(@))`
`rAr 3(sin2theta-sin30^(@))=sin2theta+sin30^(@)`
`=4 xx 1/2`
`rArr sin2theta=1`
`=sinpi/2`
`therefore 2theta=npi+(-1)^(n)pi/2`
`rArr theta=(npi)/(2)+(-1)^(n)pi/4` Ans.


Discussion

No Comment Found