InterviewSolution
Saved Bookmarks
| 1. |
Solve : `9x^(2) + 10x + 3 = 0`. |
|
Answer» The given equation is `9x^(2)+10x+3=0`. This is of the form `ax^(2)+bx+c=0`, Where a = 9, b = 10 and c = 3. `therefore" "(b^(2)-4ac)={(10)^(2)-4xx9xx3}=(100-108)=-8 lt 0`. So, the given equation has complex roots. These roots are given by `(-b+- sqrt(b^(2)-4ac))/(2a)=(-10 +- sqrt(-8))/(2xx9)" "[because (b^(2)-4ac)=-8]` `=(-10 +- i2 sqrt(2))/(18)=(-5+- i sqrt(2))/(9)`. `therefore" ""solution set"={(-5+ i sqrt(2))/(9),(-5- i sqrt(2))/(9)}={(-5)/(9)+(sqrt(2))/(9)i, (-5)/(9)-(sqrt(2))/(9)i}`. |
|