InterviewSolution
Saved Bookmarks
| 1. |
Solve `cos3x+cosx-cos2x=0` |
|
Answer» Given equations: `cos3x+cosx-cos2x=0`, or `2cos(3x+x)/(2)cos(3x-x)/(2)-cos2x=0,` or `2cos2xcosx-cos2x=0` or `cos2x.(2cosx-1)=0`, `rArr cos2x=0` or `2cosx-1=0` If `cos2x=0`, then `2x=(2n+1)pi/2 rArr x=(2n+1)pi/4` where `n in z` If `2cosx-1=0`, then `cosx=1/2 rArr cosx=cospi/3` `rArr x=2npi+-pi/3` Therefore, the general solution of given equation is `x=(2n+1)pi/2`. or `2npi+- pi/3, n in Z` Ans. |
|