InterviewSolution
Saved Bookmarks
| 1. |
Solve: `sectheta-1=(sqrt(2)-1)tantheta` |
|
Answer» `sectheta-1=(sqrt(2)-1)tantheta` `rArr (sectheta-1)^(2)=(sqrt(2)-1)^(2).tan^(2)theta` `=(2+1-2sqrt(2))(sec^(2)theta-1)` `=(3-2sqrt(2))(sec^(2)theta-1)` `rArr (sectheta-1)^(2)=3-2sqrt(2))(sectheta-1)(sectheta+1)` `rArr (3-2sqrt(2)(sectheta-1)(sectheta+1)-(sectheta-1)^(2)=0` `rArr (sectheta-1)[(3-2sqrt(2))(sectheta+1)-(sectheta-1)]=0` `rArr (sectheta-1)[(2-2sqrt(2))sectheta+(4-2sqrt(2))]=0` `rArr (sectheta-1)[(2-2sqrt(2))sectheta-sqrt(2)(-2sqrt(2)+2)]=0` `rArr (sectheta-1)(2-sqrt(2))(sectheta-sqrt(2))=0` `rArr sectheta-1=0` or `sectheta-sqrt(2)=0` Now `sectheta-1=0` `rArr sectheta=1` `rArr costheta=1` `rArr costheta=cos0^(@)` `rArr theta=2npi+-0=2npi` Ans. and `sectheta-sqrt(2)=0` `rArr sectheta=sqrt(2)` `rArr costheta=1/sqrt(2)` `rArr costheta=cosi/4` `rArr theta=2npi+-pi/4` But the given equation is not satisfied by `theta=2npi-pi/4`, so `theta=2npi+pi/4`. Ans. |
|