1.

Solve: \(\sqrt{2}secθ-tanθ=\sqrt{3}\)

Answer»

We have: \(\sqrt{2}secθ-tanθ=\sqrt{3}\)

\(\frac{\sqrt{2}}{cosθ}-\frac{sinθ}{cosθ}=\sqrt{3}\) 

\(\sqrt{2}-sinθ =\sqrt{3}cosθ\) 

\(\sqrt{3}cosθ+sinθ=\sqrt{2}\) 

Divide the equation by 2 

\(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ=\frac{\sqrt{2}}{2}\)

\(cos(\frac{\pi}{6})cosθ+sin(\frac{\pi}{6})sinθ=\frac{1}{\sqrt{2}}\)

\(cos(θ-\frac{\pi}{6})=cos(\frac{\pi}{4})\)

\(θ-\frac{\pi}{6}=2n\pi ± \frac{\pi}{4}\)

\(θ=2n\pi ±\frac{\pi}{4}+\frac{\pi}{6}\) 

\(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6}\)  or  \(θ=2n\pi -\frac{\pi}{4}+\frac{\pi}{6}\)

\(θ=2n\pi +\frac{5\pi}{12}\)  or  \(θ=2n\pi-\frac{\pi}{12}\)



Discussion

No Comment Found