1.

Solve: \(\sqrt{3}cosθ+sinθ=\sqrt{2}\)

Answer»

We have: \(\sqrt{3}cosθ+sinθ=\sqrt{2}\) 

Dividing both sides by 2, we get 

\(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ =\frac{\sqrt{2}}{2}\)

\(cosθ.cos\frac{\pi}{6}+sinv.sin\frac{\pi}{6}=\frac{1}{\sqrt{2}}\)

\(cos(θ-\frac{\pi}{6})=cos\frac{\pi}{4}\)

⇒ \(θ-\frac{\pi}{6}=2n\pi +\frac{\pi}{4},n∈z\) 

\(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6} n∈z\) 

\(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6}\)  or  \(θ=2n\pi -\frac{\pi}{4}+\frac{\pi}{6},n∈z\)

\(θ=2n\pi +\frac{5\pi}{12}\)  or   \(θ=2n\pi -\frac{\pi}{12},n∈z\)



Discussion

No Comment Found