1.

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.A. `1/2` or `-2`B. `1/3` or `-3`C. `1/4` or `-2`D. `1/6` or `-1`

Answer» Correct Answer - D
`tan^(-1)3x+tan^(-1)3=tan^(-1)2x=pi/4 rArr tan^(-1)((3x+2x)/(1-6x^(2))=pi/4`.
`therefore (5x)/(1-6x^(2))=tanpi/4 =1 rArr 6x^(2)+5x-1=0`
`rArr (x+1)(6x-1)=0`.
`rArr x=-1` or `x=1/6`.


Discussion

No Comment Found