InterviewSolution
Saved Bookmarks
| 1. |
Solve that following equations :`"tantheta"+"tan"(theta+pi/3)+"tan"(theta+(2pi)/3)=3` |
|
Answer» Here, we will use, `tan(A+B) = (tanA+tanB)/(1-tanAtanB)` It is given that , `tantheta+tan(theta+pi/3)+tan(theta+(2pi)/3) = 3` `=>tantheta+(tantheta+tan(pi/3))/(1-tanthetatan((pi)/3)) +(tantheta+tan((2pi)/3))/(1-tanthetatan((2pi)/3)) = 3` `=>(tantheta+sqrt3)/(1-sqrt3tantheta) +(tantheta-sqrt3)/(1+sqrt3tantheta) = 3-tantheta` `=>((tantheta+sqrt3)(1+sqrt3tantheta) +(tantheta-sqrt3)(1-sqrt3tantheta))/(1-3tan^2theta) = 3-tantheta` `=>(tantheta+sqrt3tan^2theta+sqrt3+3tantheta+tantheta-sqrt3tan^2theta-sqrt3+3tantheta)/(1-3tan^2theta) = 3-tantheta` `=>(8tantheta)/(1-3tan^2theta) = 3-tantheta` `=>8tantheta = (3-tantheta)(1-3tan^2theta)` `=>8tantheta = 3-9tan^2theta-tantheta+3tan^2theta` `=>9tantheta-3tan^3theta = 3-9tan^2theta` `=>3tantheta - tan^3theta =1-3tan^2theta` `=>(3tantheta - tan^3theta)/(1-3tan^2theta) = 1` `=>tan3theta = tan(pi/4)` `=>3theta = npi+pi/4` `=>theta = (npi)/3+pi/12` |
|