

InterviewSolution
Saved Bookmarks
1. |
Solve the differential equation `(dy)/(dx)=1+x+y^(2)+xy^(2)`, when y=0 and x=0. |
Answer» Given that, `(dy)/(dx)=1+x+y^(2)+xy^(2)` `Rightarrow (dy)/(dx)=(1+x)+y^(2)(1+x)` `Rightarrow (dy)/(dx)=(1+y^(2))(1+x)` `Rightarrow (dy)/(1+y^(2))=(1+x)(dx)` On integrating both sides, we get `tan^(-1)y=x+(x^(2))/(2)+k..(i)` When y=0 and x=0, then substituting these values in Eq. (i) we get `tan^(-1)(0)=0+0+K` `Rightarrow K=0` `Rightarrow tan^(-1) y=x+(x^(2))/(2)` `Rightarrow y=tan(x+(x^(2))/(2))` |
|