1.

Solve the differential equation `(dy)/(dx)=1+x+y^(2)+xy^(2)`, when y=0 and x=0.

Answer» Given that, `(dy)/(dx)=1+x+y^(2)+xy^(2)`
`Rightarrow (dy)/(dx)=(1+x)+y^(2)(1+x)`
`Rightarrow (dy)/(dx)=(1+y^(2))(1+x)`
`Rightarrow (dy)/(1+y^(2))=(1+x)(dx)`
On integrating both sides, we get `tan^(-1)y=x+(x^(2))/(2)+k..(i)`
When y=0 and x=0, then substituting these values in Eq. (i) we get
`tan^(-1)(0)=0+0+K`
`Rightarrow K=0`
`Rightarrow tan^(-1) y=x+(x^(2))/(2)`
`Rightarrow y=tan(x+(x^(2))/(2))`


Discussion

No Comment Found

Related InterviewSolutions