1.

Solve the differential equation `(dy)/(dx)=sin^(4)x*cosx`.

Answer» `(dy)/(dx)=sin^(4)x*cosx`
Integrate both sides with respect to `x`
`int(dy)/(dx)*-dx=intsin^(4)x cosx dx+c`
Let `sinx=t`
`implies intdy=intt^(4)*-dt+-cimpliescosx=-(dt)/(dx)`
`cosxdx=dt`
`implies y=(1)/(5)t^(5)+c`
`implies y=(1)/(5)sin^(5)x+c`.


Discussion

No Comment Found

Related InterviewSolutions