InterviewSolution
Saved Bookmarks
| 1. |
Solve the equation 5sin^(2)x-7sinx cosx+16cos^(2)x=4 |
|
Answer» Solution :To solve this equation we use the fundamental formula of trignometric identities, `sin^(2)x + cos^(2)x=1` writing the equation in the form, `5SIN^(2)x-7sinx.cosx+16cos^(2)x=4(sin^(2)x+cos^(3)x)` `RARR sin^(2)x-7sinxcosx+12cos^(2)x=0` Dividing by `cos^(2)x` on both side we GET `tan^(2)x-7tanx+12=0` Now it can be factorized as: `(tanx-3)(tanx-4)=0` `rArr tanx=3,4` i.e., `tanx=tan(tan^(-1)3)` or `tanx=tan(tan^(-1)4)` `rArr x=npi+tan^(-1)3` or `x=npi+tan^(-1)4, n in I`.ANS. |
|