

InterviewSolution
1. |
Solve the equation by inversion method :2x + 6y = 8, x + 3y = 5 |
Answer» Given, 2x + 6y = 8, x + 3y = 5 The given equations can be written in the matrix form as : \( \begin{bmatrix} 2 & 6 \\[0.3em]1 &3 \\[0.3em] \end{bmatrix} \) \( \begin{bmatrix} x \\[0.3em] y\\[0.3em] \end{bmatrix} \) = \( \begin{bmatrix} 8 \\[0.3em] 5\\[0.3em] \end{bmatrix} \) This is of the form AX = B, where A = \( \begin{bmatrix} 2 & 6 \\[0.3em]1 &3 \\[0.3em] \end{bmatrix} \), X = \( \begin{bmatrix} x \\[0.3em] y\\[0.3em] \end{bmatrix} \) and B = \( \begin{bmatrix} 8 \\[0.3em] 5\\[0.3em] \end{bmatrix} \) Let us find A-1. |A| = \( \begin{bmatrix} 2 & 6 \\[0.3em]1 &3 \\[0.3em] \end{bmatrix} \)= 6 – 6 = 0 ∴ A-1 does not exist. Hence, x and y do not exist. |
|