1.

Solve the equation by inversion method :2x + 6y = 8, x + 3y = 5

Answer»

Given,

2x + 6y = 8, 

x + 3y = 5

The given equations can be written in the matrix form as :

\( \begin{bmatrix} 2 & 6 \\[0.3em]1 &3 \\[0.3em] \end{bmatrix} \) \( \begin{bmatrix} x \\[0.3em] y\\[0.3em] \end{bmatrix} \) = \( \begin{bmatrix} 8 \\[0.3em] 5\\[0.3em] \end{bmatrix} \)

This is of the form AX = B, where

A = \( \begin{bmatrix} 2 & 6 \\[0.3em]1 &3 \\[0.3em] \end{bmatrix} \), X = \( \begin{bmatrix} x \\[0.3em] y\\[0.3em] \end{bmatrix} \) and B = \( \begin{bmatrix} 8 \\[0.3em] 5\\[0.3em] \end{bmatrix} \)

Let us find A-1.

|A| = \( \begin{bmatrix} 2 & 6 \\[0.3em]1 &3 \\[0.3em] \end{bmatrix} \)= 6 – 6 = 0

∴ A-1 does not exist. 

Hence, 

x and y do not exist.



Discussion

No Comment Found

Related InterviewSolutions