1.

Solve the equation by reduction method :x + 3y = 2, 3x + 5y = 4.

Answer»

Given,

x + 3y = 2, 

3x + 5y = 4.

The given equations can be written in the matrix form as :

 \( \begin{bmatrix} 1 & 3 \\[0.3em]3 &5 \\[0.3em] \end{bmatrix} \) \( \begin{bmatrix} x \\[0.3em] y\\[0.3em] \end{bmatrix} \) = \( \begin{bmatrix} 2 \\[0.3em] 4\\[0.3em] \end{bmatrix} \)

By R2 – 3R1, we get

\( \begin{bmatrix} 1 & 3 \\[0.3em]0 &-4 \\[0.3em] \end{bmatrix} \)\( \begin{bmatrix} x \\[0.3em] y\\[0.3em] \end{bmatrix} \) = \( \begin{pmatrix} 2 \\[0.3em] -2\\[0.3em] \end{pmatrix} \).

∴ \( \begin{bmatrix} x+3 \\[0.3em] 0-4y\\[0.3em] \end{bmatrix} \) = \( \begin{bmatrix} 2 \\[0.3em] -2\\[0.3em] \end{bmatrix} \)

By equality of matrices,

x + 3y = 2 …(1) 

- 4y = - 2

From (1), 

y = \(\frac{1}{2}\)

Substituting y = \(\frac{1}{2}\) in (1), we get,

x + \(\frac{3}{2}\) = 2

∴ x = 2 – \(\frac{3}{2}\) = \(\frac{1}{2}\)

Hence,

x = \(\frac{1}{2}\), y = \(\frac{1}{2}\) is the required solution.



Discussion

No Comment Found

Related InterviewSolutions